Good evening!

Thank you for coming.

This evening we will provide you with information on how we teach
Mathematics at Moorlands and suggest ways that you can help your child at home using similar methods.

Maths at Moorlands.

A focus on Concrete, Pictorial and Abstract approaches. (CPA) Karen Chapman and Justine Jackson

Maths Leaders Moorlands Primary School

Why are we engaging parents?

BBC News Report 2006

69\% of parents do not help children with their homework because...

> Everything has changed since they were at school and they are not confident in the new methods.

Parent confidence and support

Lots of initiatives have been introduced, like 'Keeping up with the children,' 'Inspire workshops' and employing parental engagement coordinators in some schools.

Despite this, the situation worsened:
BBC News Report 2010
82% of parents feel unable to help pupils with their homework.

Lack of confidence.

The 'problem' with maths

"My dad thinks that the way he does maths is easier and better than my way but he doesn't understand my way and his way confuses

That's not the way we do it in school! me."

Pupil - Catford High School

In the Impact in Learning maths programme, children regularly talked about the clash between the maths learnt in school and what parents were showing them at home.

Why it is important to engage parents with the mathematical learning of their children?

Research evidence suggests that when parents are engaged in their children's learning, outcomes for children can be improved.

Research also highlights the fact that parents feel they need more support to understand the current curriculum content and how they can support their child with their learning at home.

Agenda

- The theory behind the importance of CPA
- Using manipulatives to introduce the basics of a new concept and ways to replicate this at home.
- Transitioning between concrete, pictorial and abstract.

Concrete, Pictorial and

 Abstract Methods
Importance of CPA

In his research on the cognitive development of children (1966), Jerome Bruner proposed three ways of working to aid development:

- Enactive representation (using 'concrete' objects)
- Iconic representation (drawing images / pictures)
- Symbolic representation (abstract numbers)
"If we do not use concrete manipulations, then we can not understand mathematics. If we only use concrete manipulations, then we are not doing mathematics."

Gu (2015)

Concrete, Pictorial, Abstract

Children should work at the stage they need until ready to move on. Within a class children can be working on the same calculation but accessing it in different ways.

Using CPA methods

Today we aim to give you a quick insight into methods used at school for the 4 rules of number and how you could adapt those to work at home, with a focus on:

- Place value
- Addition and Subtraction
- Multiplication and Division
- Possible scope for a fractions evening later in the year if people would like that.

Place Value

(understanding the value of each digit and it's place in the number system)

Place value

How many ways can you show 29?

Twenty nine

$$
20+9
$$

In KS1 children will work with base 10 resources when working with 2 digit numbers. This equipment helps them 'see' the 'ten-ness' of ten.

The next step...

- This moves on to Place Value Counters in KS2. (Year 3 / 4 /5/6)

Pictorial Place Value

 countersDraw the counters

Addition

KS1 Addition- Regrouping to

make 10

Solve...

$$
7+4
$$

Model

\bigcirc	\bigcirc	0	0	0
\bigcirc				

Calculations
$7+4=11$

Beginning to use formal written methods

- Formal column method will first of all be introduced using the visual of place value counters. This is so that children fully understand what is happening with the numbers when we exchange and carry over rather than just learning a process.

Addition- Column method

Solve... $\quad 35+17=$

Key vocabulary: exchange
Can we exchange any counters?

Addition- Column method
Solve... $243+368=$

Calculations
243
+368
$\begin{array}{r}11 \\ \hline 611\end{array}$

Key vocabulary: exchange
Can we exchange any counters?

Moving to pictorial

After lots of experience with the actual counters children should be able to
draw the place value counters to help
them solve a calculation, crossing out any counters that are to be exchanged.

Abstract

Children will naturally move away from drawing counters and carry out the calculation abstractly. Here it is clear the importance of being able to add single digits together with ease, including crossing the ten, as we looked at on the earlier slide. The highest numbers they will ever have to add is $9+9$

Subtraction

Subtraction - make 10

Solve...
$14-5=$

Model
$\because:!:!$

Calculations
$14-5=$

Subtraction - make 10

Solve... $\quad 14-5=$

Model
Calculations
$14-5=$

Subtraction - make 10

Solve... $14-5=$

Model
Calculations
$14-5=9$

Subtraction- Column method

Solve... $35-17=$

Key vocabulary: exchange
Can we exchange any counters?

Subtraction- column

method

Solve... $234-88=$

Calculations

$1{ }^{1} 2$
$2_{2}^{2} 4$

$\begin{array}{r}-\quad 88 \\ \hline 146 \\ \hline\end{array}$

Key vocabulary: exchange
Can we exchange any counters?

Pictorial and abstract

As with addition, after lots of experience with the actual counters children should be able to draw the place value counters to help them solve a calculation, crossing out any counters that are to be exchanged. This will then naturally move to working abstractly with the numbers.

Multiplication

Vocabulary

Multiplication	Division
Times	Share between
Times by	Share into
Multiply	Split
Multiply by	Divide
Product	Group
Product of	Split into
Lots of	
Groups of	

Language of multiplication

$$
5 \times 3=15
$$

factor

factor

product

Multiplying 2 digit numbers by ⿳亠丷厂犬

 digitWe often start on a bar model to show 6 lots of 23．This would be done first of all with no crossing over into the tens then we look at exchanging ones for tens．

$$
\begin{aligned}
& 3 \times 6= \\
& 20 \times 6=
\end{aligned}
$$

Add the totals together

Place Value Grid

Tens	Ones	2		x		3
(\%) (-)	(1) (1) (1)					
(-) (2)	(1) (1) (1)			3	$=$	
(-)	- (1) -			\times	3	$=$

Pictorial with 2 digits

- Eventually, children will use an abstract method to calculate up to 4 digits by one digit including with multiple exchange.

Children begin to multiply by 2 digits in Year 5 partitioning

Working abstractly

1. Multiply by the ones
2.Bring down a zero as we are multiplying by tens, the number needs to be ten times the size.
2. Add the 2 parts together.

KS2 Arithmetic Paper

Source: Q3, 6, 10, 20, 292023 KS2 Arithmetic Paper;
Q16, 2017 KS2 Arithmetic Paper

KS2 Reasoning Paper (1)

13
Write the missing number to make this calculation correct.

$$
754 \times 6+754 \times 3=754 \times \square
$$

20

Source: Q3, 2017 KS2 Reasoning Paper : Paper 2; Q13, 2023 KS2 Reasoning Papeı

19 Layla makes jewellery to sell at a school fair

Each bracelet has 53 beads.
She makes 68 bracelets.

Each necklace has 105 beads.
She makes 34 necklaces

How many beads does Layla use altogether?

16 A box of 24 chocolate eggs has a mass of 870 grams
The empty box has a mass of $\mathbf{3 0}$ grams.

What is the mass of one chocolate egg?

- All of these formal methods for multiplication, ultimately boil down to times table facts. Children who memorise times tables, move very swiftly through column work, as their working memory is not taken up with try to work out 7×8 for instance.

Which multiplication facts do white Rose students find tricky?

TIMES TABLE
Source: https://www.cambridgemaths.org/Images/espresso_1_learning_and_assessing_times_tables.pdf

Do students need to

memorise 144 facts?

1×1	1×2	1×3	1×4	1×5	1×6	1×7	1×8	1×9	1×10	1×11	1×12
2×1	2×2	2×3	2×4	2×5	2×6	2×7	2×8	2×9	2×10	2×11	2×12
3×1	3×2	3×3	3×4	3×5	3×6	3×7	3×8	3×9	3×10	3×11	3×12
4×1	4×2	4×3	4×4	4×5	4×6	4×7	4×8	4×9	4×10	4×11	4×12
5×1	5×2	5×3	5×4	5×5	5×6	5×7	5×8	5×9	5×10	5×11	5×12
6×1	6×2	6×3	6×4	6×5	6×6	6×7	6×8	6×9	6×10	6×11	6×12
7×1	7×2	7×3	7×4	7×5	7×6	7×7	7×8	7×9	7×10	7×11	7×12
8×1	8×2	8×3	8×4	8×5	8×6	8×7	8×8	8×9	8×10	8×11	8×12
9×1	9×2	9×3	9×4	9×5	9×6	9×7	9×8	9×9	9×10	9×11	9×12
10×1	10×2	10×3	10×4	10×5	10×6	10×7	10×8	10×9	10×10	10×11	10×12
11×1	11×2	11×3	11×4	11×5	11×6	11×7	11×8	11×9	11×10	11×11	11×12
12×1	12×2	12×3	12×4	12×5	12×6	12×7	12×8	12×9	12×10	12×11	12×12

$1 \times 1=1$
$1 \times 2=2$
$1 \times 3=3$
$1 \times 4=4$
$1 \times 5=5$
$1 \times 6=6$
$1 \times 7=7$
$1 \times 8=8$
$1 \times 9=9$
$6=6=36$
$6 \times 7=42$
$6 \times 8=48$
$6 \times 9=54$
648
$2 \times 2=4$
$2 \times 3=6$
$2 \times 4=8$
$2 \times 5=10$
$2 \times 6=12$
$2 \times 7=14$
$2 \times 8=16$
$2 \times 9=18$
4

$5 \times 5=25$
$5 \times 6=30$
$5 \times 7=35$
$5 \times 8=40$
$5 \times 9=45$

Division

Division

Solve...

$$
615 \div 5=
$$

Model

H	\mathbf{T}	$\mathbf{0}$
(100)	10	1
(100)		0
(100)		0

Calculations
$5 \longdiv { 6 1 5 }$

Division

Solve...

$$
615 \div 5=
$$

Model
Calculations

$\frac{1}{5 \longdiv { 6 1 5 }}$

Division

Solve... $615 \div 5=$

Calculations

Division

Solve...
$615 \div 5=$

Calculations
${ }_{5}^{\frac{12}{6 ' 15}}$

Division

Solve...

$$
615 \div 5=
$$

Model

Division

Solve...

$$
615 \div 5=
$$

Calculations

Long division - Year 6

Step 1 Write out the multiples
32
64

$3 2 \longdiv { 3 9 3 6 }$
 96
 128
 160

192
224

Long division - Year 6

32
64
96
128
160
192
224

Step 2 Work through as short division, how many 32s in 39

What multiple did I get to? 32 . Write down the multiple and subtract.

This is really the same process as carrying over in short division, but we are writing it underneath.

Long division - Year 6

32

Step 3 Bring down the next digit. SO we are now looking at 73. Repeat the steps. Work through as how many 32s in 73? 2

What multiple did I get to? 64.
Write down the multiple and subtract.

Long division - Year 6

32
64
96
128
160
192
224

Step 4 Bring down the next digit. SO we are now looking at 96. Repeat the steps. Work through as how many 32s in 96? 3

What multiple did I get to? 96 . Write down the multiple and subtract. There are no remainders.

Owide	$\sqrt{26} 15$
Multiple?	$5 \sqrt{\frac{1}{15}} 2 \times 3$
Sobtact	$\begin{gathered} \frac{2}{315} \\ -4 \\ \rightarrow> \end{gathered}$
	$\frac{\sqrt[3]{15}}{\frac{215}{15}}$
Repat	

Thank you for listening.

We hope we have given you a useful insight into using CPA approaches within Mathematics. If you have any questions please don't hesitate to ask.

